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A new and efficient scheme for first-principles 
calculations of phonon spectra 
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Theory of Condensed Matter Group, Cavendish Laboratory, Madingley Road, 
Cambridge CB3 OHE, UK 

Received 27 September 1989 

Abstract. We present a new method for performing first-principles frozen phonon cal- 
culations within the framework of density-functional theory and the adiabatic approxi- 
mation. In our approach the super-cell Kohn-Sham Hamiltonian is diagonalised with 
sufficient accuracy to compute phonon properties in the harmonic approximation in a time 
which is independent of the super-cell size. This method dramatically improves the efficiency 
of the super-cell phonon technique and can be implemented rapidly by modifying an existing 
total energy program. We have applied this scheme to compute the properties of long- 
wavelength phonons in silicon in a plane-wave pseudopotential calculation. Results for 
phonon frequencies and the internal strain parameter are in good agreement with previously 
calculated and experimental values. 

1. Introduction 

In recent years first-principles plane-wave pseudopotential techniques have been used 
to compute a wide range of the dynamical properties of crystalline materials [l-51. The 
method has been applied to compute both harmonic and anharmonic properties in a 
variety of different types of materials including insulators, non-polar and polar semi- 
conductors and metals. In general excellent agreement is found between experimental 
data and the results of first-principles calculations; for example calculated phonon 
frequencies often agree with experimental values to within 1-3 % . Dynamical properties 
have also been successfully obtained using other first-principles techniques, including 
the mixed-basis pseudopotential approach [6] and the linear muffin tin orbital (LMTO) 
method [7]. 

To date the most popular technique for computing the phmon properties of a crystal 
within the framework of total-energy calculations is the so-called ‘direct’ approach. In 
the simplest realisation of this method one takes a super-cell of the solid, subject to 
periodic boundary conditions, and freezes in the phonon mode of interest by slightly 
displacing each atom away from its perfect crystalline lattice site. Phonon frequencies are 
then computed within the adiabatic approximation either by computing the Hellmann- 
Feynman forces on the atoms or the differences in total energies between the perfect 
and distorted structures. The periodic boundary conditions impose a restriction on the 
range of phonon modes which can be addressed with any given super-cell. In particular 
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if we let L and g denote general real-space and reciprocal-space Bravais lattice vectors 
of the super-cell then only phonons whose wavevector q obeys 

L * q = 2nn, (1.1) 
where nL is integer for all L ,  can be accommodated within the cell. Equation (1.1) 
also implies that the phonon wavevector q must be a member of the set of super-cell 
reciprocal-space lattice vectorsg. For q away from high symmetry points of the primitive 
zone of the solid the number of atoms in the super-cell demanded by condition (1.1) 
quickly becomes rather large, even if one uses the optimal choice of cell. The com- 
putational effort to solve for the charge density, total-energy and Hellmann-Feynman 
forces of a super-cell using conventional total-energy techniques scales as N; where Np 
is the number of primitive cells contained within the super-cell. This consideration 
severely constrains the size of super-cells which can be studied using the conventional 
total-energy approach, which in turn limits the number of points in the Brillouin zone 
where phonon properties are computationally accessible. However, there is a large 
class of experimentally measurable quantities, which includes heat capacities, thermal 
expansion coefficients and temperature dependences of band gaps, which must be 
computed by integrating phonon properties over the whole zone. Under these cir- 
cumstances it is highly desirable to have a computational technique which allows the 
calculation of phonon properties at arbitrary points in the zone. 

In this paper we present a new and efficient method for performing first-principles 
frozen phonon calculations. We show that the dynamical properties of a crystalline solid, 
in the harmonic approximation, can be obtained from a super-cell calculation without 
recourse to a complete solution of the Kohn-Sham Hamiltonian. A scheme is described 
in which electronic eigenvectors are computed with sufficient accuracy to construct the 
dynamical matrix in a time which is independent of Np. In our method the numerical 
work to obtain the charge density and the Hellmann-Feynman force on each atom is 
also independent of Np. Our approach thus overcomes the limitations imposed by the 
N; scaling behaviour, found in the traditional frozen phonon method, for the com- 
putational effort to diagonalise the Kohn-Sham Hamiltonian and compute the 
Hellmann-Feynman forces. 

The basis of our approach is similar to the method for computing the linear response 
functions of solids developed by Baroni et a1 [8]. Their method is rather flexible and 
enables them to compute the response of the solid at completely arbitrary wavevectors 
in the zone, including the infinite wavelength limit. The work of Baroni et alis formulated 
in terms of the Green’s functions of the solid and provides similar speed improvements 
to the approach presented here. The advantage of the present formulation is that it is 
couched in the conventional language of total-energy calculations, and as aconsequence, 
our scheme can be rapidly implemented by adapting an existing total-energy program. 

2. The dynamical matrix 

The primary purpose of this section is to establish some of the notation we shall use in 
this paper, and to briefly review the structure the dynamical matrix takes on within the 
framework of a first-principles total-energy calculation. We shall develop the for- 
mulation for a crystalline solid containing s atoms in the primitive unit cell and adopt 
the convention of labelling each atom of the solid by a primitive real-space Bravais lattice 
vector E specifying its unit cell and an index k ,  which runs from 1 to s, and which labels 
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the position of the atom in the primitive basis. It will be convenient to write the general 
position vector R of atom lk as 

Rf = 1 -k mk -k uf (2.1) 
where mk is the position vector of atom lk measured from the origin of the cell 1 when 
there are no phonon displacements in the crystal and uf  is a vector giving the dis- 
placement of atom lk away from equilibrium. We shall use the symbol G to stand for a 
general element of the set of primitive reciprocal-space lattice vectors. 

The theory of lattice dynamics in the harmonic and adiabatic approximations is 
formulated in terms of the dynamical matrix [ 9 ] ,  which in direct space is given by 

D:;(l- 1’) = ( l / V p p ) q q $ ( l -  1 ’ )  (2 .2)  
where pk is the mass of the kth atom of the atomic basis and where 

(pi; (1 - 1’) = (a%,,, /auf&& ( 2 . 2 ~ )  

where E,,, is the total-energy, a and /3 are Cartesian directions and ( )o  indicates that 
the derivative is to be evaluated with the atoms in their perfect crystal positions. 
Phononfrequencies and polarisations can be calculated directly from the eigenvalues and 
eigenvectors of the Fourier transform of the direct space dynamical matrix defined by 
[91 

D:;(q) = ~ i $ ’ ( l )  expi-iq. (1 + mk - mk”>l. (2.3) 
1 

In what follows we shall develop our formulation for the lattice dynamics in the 
general case where the ionic potential has both local and non-local components. Under 
these circumstances, within the framework of total-energy density-functional cal- 
culations the energies, Hellmann-Feynman forces and the dynamical matrix can be 
expressed as a sum of electrostatic terms, which depend only on the positions of the ions, 
and terms which in general depend on both the Kohn-Sham wavefunctions and the ionic 
coordinates [lo,  11,121. In this communication we shall be concerned with computing 
those parts of the dynamical matrix which depend on the electron wavefunctions. The 
direct ion-ion electrostatic contributions to the dynamical matrix are readily evaluated 
at arbitrary wavevector using standard Ewald transformation methods [9] and therefore 
need not be considered further here. We shall find it convenient to define a matrix y 
through 

yi$’(l- 1 ’ )  = ( a 2 ( ~ , , ,  - E , , ) / a ~ f ~ a u ~ : ~ ) ~  (2.4) 
where Ell is the ion-ion contribution to the total-energy and to introduce the electron- 
ion component to the force on atom lk which is given by [12] 

F f w  = - a(Et0, - EIl)/aufw. (2.5) 

3. Frozen phonon super-cell approach for the dynamical matrix 

To date most first-principles calculations have concentrated on computing phonon 
properties at high symmetry points in the Brillouin zone, or along high symmetry 
directions. Under these circumstances it is often the case that symmetry considerations 
constrain many components of the dynamical matrix to be zero, allowing phonon 
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eigenvectors to be obtained by inspection. In this section we consider what information 
is necessary to calculate the dynamical matrix in the general case using the Hellmann- 
Feynman forces. We establish the result that a knowledge of the variation in the 
density matrix to first order in the atomic displacements is sufficient to compute phonon 
properties in the harmonic approximation. For completeness we also outline the con- 
nection between the force approach for the dynamical matrix, and the well known 
expressions for this quantity written in terms of the density response function of the 
solid. 

In the direct frozen phonon approach the dynamical matrix at wavevector q is 
computed by freezing in a series of distortions of the form 

ufu = (A/2)5$ exp[iq - ( I  + m')] + cc (3.1) 
where cc stands for the complex conjugate, cis a complex length vector and A is a small 
parameter, chosen to ensure that anharmonic effects are small. Hellmann-Feynman 
forces, Ffu, are then computed for the distorted structure. Using the definitions of y 
(2.4) and Ffu (2.5) together with the Fourier transform convention (2.3) we find that the 
forces are related to y through 

Let us define the vector r as 

(3.3) 
k'B 

We make two general observations about (3.2) and (3.3). Firstly it is clear from (3.3), 
that the entire dynamical matrix can be constructed provided we are able to compute 
the vector z for 3s independent choices for the vector 5,  Secondly we see that in order 
to construct the vector z from the forces in equation (3.2) it is not necessary to compute 
the variation in the forces beyond first order in the parameter A .  Finally we note in 
passing, that in principle, it is not necessary to compute the forces on all sN,  atoms in 
the super-cell to obtain the vector z through (3.2) and (3.3); a particular element z$ can 
be derived from forces on two atoms of type k in direction a, and thus the forces on 2s 
atoms suffice to determine completely the complex vector z for each choice of the vector 

The Hellmann-Feynman theorem allows us to express F L  in terms of the density 
5. 
matrix of the Kohn-Sham eigenvectors through 

Ffu = 11 p( r ,  r')&(r', r )  d r  dr '  (3.4) 

where 

dVh,(r - R f ,  r' - R f )  aVhL(r - R t ,  r' - R,k) 
&(r, r ' )  = + 

aru ar ;  

aVk,(r - RF) 
are 

+ S(r - r ' )  (3.4a) 

V f ( r )  and VkL(r ,  r')  being the local and non-local potentials for the atom k.  For small 
displacements of the nuclei away from equilibrium we may formally expand the density 
matrix as a power series in the parameter A as 
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p(r ,  r ’ )  = p y r ,  r ’ )  + Apl(r ,  r’)  + O(A2) (3.5) 
po(r, r ’ )  being the density matrix of the crystal without any displacements. Substituting 
this expansion into (3.4) we find that 

Ffn = // ( p o ( r ,  r ’ )  + A p l ( r ,  r ’ ) )  pfn(r’, r) drd r ’  + O(A2). 

We see, therefore, that in order to compute the forces in the distorted structure correct 
to first order in A ,  and hence the dynamical matrix through (3.2), it is not necessary 
to compute the change in the density matrix beyond the first-order variation in the 
displacement parameter. 

We note in passing that it is straightforward to transform (3.6) into a more familiar 
expression for the dynamical matrix in terms of the static density response function 
~ ( r ,  r‘)  in the case when the ionicpotential islocal. Under these conditions (3.6) simplifies 
to 

F f n  = 1 (po(r)  + Apl(r))Pfa(r)  d r  + O(A2) (3.7) 

where 

&(r) = avk,(r - I - mk - u k ) / a r ,  (3.8) 
and where p ‘(r) and p (r)  are the ground state and first-order changes in the charge 
density respectively. Formally the first-order variation in the charge density can be 
written in terms of the density response function of the system, ~ ( r ,  r ’ ) ,  as 

Ap’(r) = ~ ( r ,  r’)AVft(r’) d r ‘  (3.9) J 
where AVLxtis the first order change in the external potential given by 

(3.9a) 

Substituting (3.8), (3.9) and ( 3 . 9 ~ )  into (3.7) and expanding to first order in ufn one 
readily finds 

avk,(r - I - m k )  avk,(r’ - I ’  - m k ’ )  
d r  dr’ (3.10) 

which is in agreement with the expression for the dynamical matrix obtained by Sham [ 101 
and Pick et a1 [ 11 J .  

+il ar ,  x ( r ,  r ’ )  arb 

4. Kohn-Sham equations and solution for the first-order density matrix 

In this section we state the Kohn-Sham equations and consider the form of the Kohn- 
Sham potential induced by a phonon distortion of the form (3.1). We also develop an 
approach for computing the expectation value of any operator for a given first-order 
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change in the potential, generated by a phonon distortion, using eigenvectors generated 
by a partial diagonalisation of the Kohn-Sham Hamiltonian. 

The Kohn-Sham equations for the solid can be written as [12] 

(-;v* + v K s  L(r) )v l ( r )  + j" vKS N L ( r ,  r ' ) ~ l ( r l )  dr '  = &lyl(r) (4.la) 

where the local Kohn-Sham potential VKsL(r) is the sum of external, Hartree and 
exchange-correlation parts given through 

(4.lb) 

and non-local Kohn-Sham potential VKS N L  is defined through the non-local ionic poten- 
tial as 

L(r)  = 2 V k ( r  - R f )  + vH(r) + P X C ( ~ )  
lk 

( 4 . 1 ~ )  

The Hartree and exchange-correlation potentials depend self-consistently on the Kohn- 
Sham wavefunctions v , ( r )  through the charge density: 

(4.ld) 

where the sum over i runs over the occupied states of the solid. The Hartree potential is 
defined by standard expression 

~ ( r )  = X I vi(r) I *  
1 

(4.le) 

while the exchange-correlation potential is defined as the functional derivative with 
respect to the charge density of the exchange and correlation energy, E,,, as 

The functional dependence of E,, on the charge density is unknown, and in practice it 
is usually estimated using the local-density approximation. 

In the case where the solid has no phonon distortion we shall denote the Kohn-Sham 
eigenfunctions as yPll(r)  with a Bloch wavevectorp in the first primitive Brillouin zone 
of the solid, and a band index n. We shall assume in what follows that we are dealing 
with a semiconductor or insulator and that there are Mvalence bands at each wavevector 
P. 

Let us now consider how we might formally compute the first order change in the 
expectation value of a general operator produced by a distortion of the form (3.1). We 
shall write expand the Kohn-Sham potential as a power series in the parameter A .  Thus 
we write for the local part 

( 4 . 2 ~ )  
and similarly for the non-local ionic contribution 

(4.2b) 
Straightforward application of second-order perturbation theory [ 131 allows one to write 
the first order charge in the expectation value of any operator 2 as 

P x c ( t - )  = 6 E x c / M r ) .  (4.Y) 

V K S  L(r)  = V k S  L(r) -k A v t ( S  L(r) + o(A2> 

V K S  N L ( r ,  r')  = VkS N L ( r ,  r ' )  + N L ( r ,  r ' )  + o(A2). 

(4.3a) 

where 1 y p n )  are the ground state Kohn-Sham eigenfunctions of the primitive cell of the 
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perfect crystal, the sums overp andp' run over the first Brillouin zone and the sums over 
n andn'  runs over the valence and conduction band states respectively. As an alternative 
to ( 4 . 3 ~ )  we may equivalently state that the first-order variation in the density matrix is 
given by 

M x  

p l ( r ,  rf) = C. ql(r ,  r ' lpn ,p 'n ' )  + cc (4.36) 
pp' n = l  n ' = M + I  

where 

We therefore conclude that the first-order change in the self-consistent Kohn-Sham 
potential contains sufficient information to compute the variation in the density matrix 
to first order in A, and thus contains sufficient information to obtain the dynamical matrix 
in the harmonic approximation using (3.6). 

The formal expression for the first-order change in the density matrix can be sim- 
plified by observing that in a crystalline solid the periodicity of the lattice imposes a 
selection rule on the matrix elements appearing in (4.3). We may write the first-order 
change in the local part of the Kohn-Sham potential as 

(4.4a) 

(4.4b) 

The form of (4.4a) implies that the first-order change in the Kohn-Sham potential may 
be written as a Fourier series of the form 

(4.5) 
where the vectors G are reciprocal-space vectors of the primitive Bravais lattice. We see 
that, whereas the zeroth-order local component of the Kohn-Sham potential can be 
written as Fourier series in the primitive wavevectors G ,  the Fourier expansion of the 
first-order change in the Kohn-Sham potential is limited to wavevectors of the form 
G + qor  G - q. Clearly apotential of the form (4.5) will only couple a state at wavevector 
p to those at p + q and p - q in (4.3). A similar line of reasoning can be employed to 
show that the same selection rule also holds true for the non-local part of the potential. 
Therefore, we may explicitly perform the sum over the wavevectorp' in (4.3b) to obtain 

~ ' ( r , r ' )  = 2 ( ~ ' ( r ,  r 'Ipn,p + qn') + ql(r, r'Ipn,p - qn'))  + CC. (4.6) 

Direct computation of the first-order variation of any observable using (4.3) and (4.6) 
for a given Kohn-Sham potential is numerically cumbersome and expensive, requiring 
evaluation of matrix elements against both conduction and valence band states. 
However, it is quite straightforward to derive an alternative expression for the first-order 
variation in any quantity using wavefunctions obtained from a partial diagonalisation of 
the Kohn-Sham Hamiltonian. Suppose we compute the eigenvectors of the zeroth- and 

M x  

p n = l n ' = M + l  



3438 R D King-Smith and R J Needs 

first-order Kohn-Sham Hamiltonians, using basis states with Bloch wavevectors p and 
p + q. We shall denote valence band eigenfunctions derived by this process by q$) ( r )  
where i is an index running between 1 and 2M and the (+) superscript indicates that 
basis states a t p  andp + q are included. It is easily shown that 
2M M 

M =  

+ 2 c (v% r ' Ipn,p + qn') + v l k ,  r' IP + qn,pn'))  (4.7) 

+ cc + O ( P )  

$ g ' ( r )  = Z q $ ~ ) ( r ) ( q j i + I ~ p n )  (4.8) 

n = l  n ' = M + l  

which is close to what we want. Now consider forming the vector 
2M 

r = l  

which is easily computed given q p n ( r ) ,  the Bloch states for the perfect solid. Using ( 4 . 3 ~ )  
and (4.7) we find, to first order A ,  

( 4 . 9 ~ )  

Obviously we can repeat this whole exercise using basis wavefunctions with Bloch 
wavevectorsp andp - q to derive a second set of wavevectors obeying 

(4.9b) 

We see therefore using ( 4 . 3 ~ ) ,  ( 4 . 9 ~ )  and (4.9b), that the expectation value of any 
operator can be written, correct to first-order in the displacement parameter A ,  as 

M 

(4.10) 
p n = l  

Note that the summation over p runs over the primitive Brillouin zone. Evaluation of 
expression (4.10) for various observables in the super-cell, such as the Hellmann- 
Feynman forces and the charge density is central to our approach for phonon properties 
in the harmonic approximation. 

5. Computational details 

In this section we discuss how the formalism discussed above is turned into an efficient 
and practical scheme for first-principles calculation of phonon properties in the harmonic 
approximation. In what follows we shall be specifically concerned with the conventional 
plane-wave pseudopotential approach, although we believe that many of the ideas 
presented above are also applicable for other types of total-energy techniques. Our 
calculation begins with a determination of the form of the Kohn-Sham potential for the 
crystal in the absence of any phonon distortion. This quantity is routinely obtained using 
the standard techniques outlined below. 
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The calculation begins with the construction of the ionic potential of the solid using 
norm-conserving ionic pseudopotentials [14], A self-consistent solution for the Hartree 
and exchange and correlation potentials appearing in the Kohn-Sham equations (4. la- 
f) is obtained using an iterative scheme. The cycle starts with a guessed input form for 
the local Kohn-Sham potential and the corresponding Kohn-Sham eigenfunctions are 
then computed by solving the eigenvalue equation ( 4 . 1 ~ ) .  If we wish to solve for the 
wavefunctions q p n ( r )  the Bloch condition greatly restricts the size of Hamiltonian which 
needs to be diagonalised because only basis functions with Bloch wavevector p need to 
be considered. Thus in a plane-wave pseudopotential program, for example, only basis 
states of the form 

exp[i(G + p )  . r] ( 5 . 1 ~ )  

need be considered to compute the wavefunctions at wavevector p in the zone. The 
number of basis states implied by ( 5 . 1 ~ )  is of course still infinite and in practice we must 
truncate the basis set to some finite size. This is usually achieved by inclining all plane 
waves obeying 

(G t- PI - (G + PI < GLX (5 . lb)  

where G,,, is the plane-wave cutoff. It will be convenient to define N,(Gmax) to be the 
number of plane waves selected by this algorithm. Our Hamiltonian thus has dimensions 
N ,  x N ,  and using iterative diagonalisation techniques the M valence band eigenvalues 
and eigenvectors can be obtained in order MA':, operations [15]. Having thus obtained 
the Kohn-Sham wavefunctions, the charge density and output Kohn-Sham potential are 
constructed using (4. Id-f). The exchange andcorrelation contribution to the potential is 
usually computed in the local-density approximation, using exchange and correlation 
energies for the free electron gas, taken for example from Ceperley and Alder's [16] 
calculation. Unless the potentials are at self-consistency the input and output Kohn- 
Sham potentials will be different. A new input potential is therefore constructed using 
some type of mixing scheme on the output potential and the old input potential, and the 
self-consistency cycle is iterated until the input and output potentials have converged to 
the desired accuracy. 

The sums over all the eigenfunctions in the solid, required for example to compute 
the charge density in (4. Id), cannot be done exactly as this would require a knowledge 
of the wavefunctions at every point in the zone. In practice this type of sum can be 
approximated using the special points method to sample the wavefunctions over the 
zone. Thus we write for any general operator, 2, 

where the special point wavevectorsp, and weights w, can be generated, for example, 
by the Brillouin zone integration method of Monkhorst and Pack [17]. 

Having obtained the Kohn-Sham potential for the crystal with the atoms in their 
perfect crystalline positions we then choose a super-cell for the phonon of interest, 
ensuring condition (1.1) is obeyed, and construct the atomic basis of the cell freezing in 
the displacement pattern generated by our choice of parameters < and A in (3.1). The 
ionicpotential for the cell is then set up in the usual way. The zeroth-order self-consistent 
Kohn-Sham potential for the super-cell is easily constructed because this potential will 
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be zero at all reciprocal-lattice vectors, g, of the super-cell, unless g is coincident with a 
reciprocal-lattice vector of the primitive cell where we have simply 

VOSU Ks:t er (G) = V",","p(G). (5.3) 
We are therefore left with the problem of computing the first-order change in the 
self-consistent potential, which we obtain by reapplying the self-consistent iterative 
procedure. We simply take an input form for Vks L(r )  of the form given in (4.5). The 
functions q r )  and qi-1 are then computed using the same special points mesh as was 
employed in the primitive cell calculation to select the vectors p .  The symmetry of the 
phonon cell will usually be lower than that of the primitive cell, and care must be taken 
to redetermine which points in the mesh are related by symmetry and to recompute the 
special point weightsin (5.3). In the plane-wave pseudopotential calculation we generate 
q$+) by computing the valence band eigenfunctions of the Kohn-Sham Hamiltonian 
using basis states of the form 

exp[i(G + p )  * r] exp[i(G + p + q )  r] (5.4a) 

including in all waves for which 

(G + P I  * (G + P I  < G2,W (5.4b) 

The total number of basis states defined in this procedure will be 2N, and thus using an 
iterative diagonalisation procedure the 2M valence band wavefunctions for q;:) can be 
obtained in order 8 M N i  operations. Having thus obtained 9;:) and q;;) on the special 
points set the output charge density is then constructed using (4.8)-(4.10), using the 
special points method to perform the Brillouin Zone integral in (4.10). The new output 
Kohn-Sham potential is thus obtained and the process iterated to self-consistency in the 
usual way. 

It is clear from the above discussion that the computational effort required to perform 
the diagonalisation of the Kohn-Sham Hamiltonian with sufficient accuracy to obtain 
the dynamical matrix in the harmonic approximation is independent of the choice of 
phonon wavevector. Essentially the calculation of the two sets of valence band states 
p;:) and q$) at each special point is just 16 times as costly as the computation of the 
primitive valence band Bloch wavefunction V p n .  

A further advantage of our scheme is that also allows the expectation value of any 
operator to be evalulated in a time which is independent of q, using equation (4.10). Let 
us consider, for example, the numerical work required to compute the expectation value 
of the first term on the right-hand side of (4.10) at any given special point. We have for 
our general operator Z(r ,  r')  

where, 

(5 .5a)  

and 

Z ( p  + g,  p + g') = 11 exp[i(p + g) . r] Z(r ,  r ' )  exp[i(p + g') r' ]  d r  dr' (5.5b) 

and where the sums over g and g' in ( 5 . 5 )  and ( 5 . 5 ~ )  need include only wavevectors of 
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the form G or G + q. We see therefore that the number of terms in the summation in 
(5 .5 )  is of order 4N’, and which is not a function of q. Thus the computational effort to 
compute the expectation value of any operator correct to first order in the displacement 
parameter A is independent of both the phonon wavevector and N,. 

In principle the total numerical work required to compute the Hellmann-Feynman 
forces should be independent of q in our approach, because using the results of section 
3, the dynamical matrix can be constructed from the forces on just 2s atoms, and the 
arguments of the previous paragraph serve to show the force on a single atom may be 
derived in a time which does not depend on q. However, we have found in practice 
that the approach using forces on just 2s atoms can lead to rounding error problems, 
particularly with very long-wavelength phonons, where the total forces produced by a 
pure acoustic mode distortion will be very small. In this case we have found good 
numerical results can be obtained by computing the forces on all the atoms in the super- 
cell and solving for the vector z in (3.3) by averaging over the forces in the cell using 

2 
rk = - exp[-iq. ( I  + m k ) l ~ F a  (5 .6 )  

NP to 
In (5.6) the summation over the set of primitive vectors { I }  runs over all atoms of type k 
in the super-cell. For long-wavelength phonon calculations the time to compute the 
Hellmann-Feynman forces therefore scales linearly with N,,  It should be borne in mind 
that the calculation of the forces is only necessary on the final self-consistent cycle, and 
that the linear increase with N ,  is much more favourable than the corresponding 
N ;  scaling of the convential super-cell approach. 

We conclude, therefore, that in our frozen phonon technique the time spent in the 
traditionally expensive parts of plane-waves pseudopotential calculations, namely the 
diagonalisation of the Kohn-Sham Hamiltonian, and the computation of the non- 
local parts of the forces, is dramatically reduced. In our experience the amount of 
reorganisation of a total-energy program required to exploit this scheme is small. Some 
rearrangement of the special points generation section of the code was found to be 
necessary. In addition the algorithm for selection of the plane-wave basis set had to be 
changed and a routine written to perform the vector product in (4.8). However, once 
these changes had been implemented the major sections of the code, which set up the 
Hamiltonian, perform the iterative diagonalisation and compute the charge density and 
Hellmann-Feynman forces, could be run as they stood. 

It should be pointed out that the run time of several sections of code will remain a 
function of q even after the changes outlined above. For example, the exchange and 
correlation potential is usually computed in real space using fast Fourier transforms 
(FFT) to convert the charge density reciprocal space to real space. The size of the grid 
will obviously increase in direct proportion to the super-cell size and therefore the time 
to transform the charge density to real space will scale as N ,  In (N,) .  However, for the 
phonons we have studied so far with this technique the most significant part of the time 
is still spent in matrix diagonalisation. 

6 .  Results and conclusions 

We have used the above scheme to perform first-priciples calculations of frequencies 
and eigenvectors of long-wavelength phonon modes in silicon. The particular modes 
studied are at points (h, h, &)2?c/a and (B, 0,0)2n/a in the Brillouin zone, a ,  being the 
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Table 1. Summary of calculation on long-wavelength phonons in silicon 

Phonon wavevector Real-space basis vectors Mode Frequency (experiment) Frequency (calculation) 
(2x la)  ( 0 )  (THz) ( T W  

$00 

0.0 8.0 8.0 TA 
0.0 -0.5 0.5 LA 

-0.5 0.0 0.5 TO 
LO 

8.0 0.0 0.0 TA 
0.0 0.5 0.5 LA 
0.0 -0.5 0.5 TO 

LO 

1.02: 
1.87+ 

15.53$ 
15.533: 

1.34t 
1.94t 

15.531: 
15.53t 

1.01s 1.021) 
1.849 1.881) 

14.960 15.141 
14.989 15.148 

1.340 1.3811 
1.929 1.8911 

14.879 15.147 
14.999 15.141 

~ ~~ 

t Value obtained using experimental values for the elastic constants from [18]. 
$ Experimental value of zone-centre T o ( r )  phonon [19]. 
9 Value determined in this calculation. 
( 1  Frequency computed from calculated elastic constants [21]. 
7 Calculated To(l-) phonon frequency using same pseudopotential, Monkhorst-Pack mesh and plane-wave 
cut-off as the long-wavelength calculation. 

lattice constant fpr silicon. Both these modes can be studied using 32 atom super-cells. 
We used a non-local norm-conserving pseudopotential generated by the method due to 
Kerker [14]. Our calculation included all plane waves up to 20 Ryd in energy and 
used the Ceperley-Alder form of the local-density approximation for exchange and 
correlation [16]. The Brillouin zone integration was performed using a (4,4,4) Monk- 
horst-Pack mesh [ 171 which had been symmetrised using the point group operations for 
the silicon Bravais lattice. The lattice constant was set to its experimental value of 
5.429 A. For the silicon phonons studied here, there is in fact no need to compute the 
forces for six independent choices of 5 in (3.1); sufficient information can be obtained 
from a single calculation, because of the symmetry constraints on the dynamical matrix. 
We chose our values of f to be 

( [ ~ , [ ~ , [ i , ~ ~ , [ ~ , ~ ~ )  = (0 .00la/ . \ /~)( l .0 ,0 .0 ,0 .0 .0.9,0.0,0.0)  (6. la) 

for the (&,&,&)2x/a phonon and 

([i, [ j ,  f i ,  [b, f ; ,  [ f )  = (0.001a/.\//5.)(1.0,1.0,1.0,0.9,0.9,0.9) (6.lb) 

for the mode at ($,0,0)2x/a. With these forms of displacement vector the distorted 
super-cells had some residual symmetry, and several points in the Monkhorst-Pack 
mesh were symmetry related, allowing a significant reduction in the computational effort 
for each self-consistency cycle. The dynamical matrix was constructed by calculating the 
Hellmann-Feynman forces on all the atoms in the cell using (5.6) to obtain the vector 
7. The above choices of parameters correspond to a value of N ,  of about 400 plane 
waves and thus the largest Hamiltonian which had to be diagonalised in our calculation 
had dimensions of roughly 800 X 800. By way of contrast, the conventional super-cell 
frozen phonon method, would entail the diagonalisation of a 6400 X 6400 element array 
at each special point of the super-cell in the 32 atom cells investigated here. 

The results of our calculation together with details of the super-cells employed are 
summarised in table 1. The frequencies of the acoustic modes are in excellent agreement 
with those predicted using the experimental elastic constants of silicon assuming that 



A new scheme for ab initio phonon calculations 3443 

the dispersion of the modes away from the origin of the zone is linear [HI.  The optic 
modes are slightly softer than the experimental value for the TO(r)  mode [19], although 
they do agree well with the calculated To(r) frequency obtained by performing a frozen 
phonon calculation using a two-atom primitive unit cell with the same basis set cut- 
off, pseudopotential and Monkhorst-Pack mesh as were employed in the 32-atom 
calculation. We have also analysed the polarisation vectors of the acoustic modes to 
compute the size of the internal strain parameter and obtained a value of 0.53 k 0.1. 
This is in excellent agreement with the numerical value of 0.53 found by Cardona et 
a1 [20] using the inter-planar force method, and also agrees with the theoretical value 
obtained from first-principles macroscopic strain calculations [21] and the recent exper- 
imental value of Cousins et a1 [22]. 

The emphasis in this paper has been on describing a scheme for performing frozen 
phonon calculations which can be implemented by making a small number of changes 
to an exisiting total-energyprogram. It should, however, be pointedout that with further 
reprogramming there are a number of extensions and uses for the method. The technique 
could be used to compute efficiently the linear response of the solid to any external 
potential of the form 

Vext(r) = E v e x t ( ~  + 4 )  e x p [ i ( ~  + 4)  * r] + CC (6.2) 
G 

where the VeX,(G + q )  are completely arbitrary, and need not correspond to a potential 
which can be realised by making small displacements of the ions away from equilibrium. 
Thus one could, for example, use the approach to compute a column of the static inverse 
dielectric response function, &-'(q + G ,  q ) ,  by choosing an external potential of the form 

and using the self-consistency procedure described above to compute the induced charge 
density and the corresponding total potential. Also in the current implementation of the 
method the size of the potential files, the charge density arrays and the FFT grids for 
the exchange and correlation potential are all grown linearly with the super-cell size. 
Memory requirements will therefore eventually place an upper bound on the size of cell 
which can be addressed in this formulation. However, these limitations are certainly not 
intrinsic to the method, as the charge density, for example, need only be stored at 
primitive vectors G and vectors of the form G + q and G - q. If the method were 
developed to include such refinements it should be possible to study phonons at com- 
pletely arbitrary points in the zone and modes, whose wavevectors are incommensurate 
with the lattice and which therefore cannot be studied in any finite super-cell. 

In conclusion we have presented a new method for computing the dynamical proper- 
ties of solids in the harmonic approximation, which has been found to produce dramatic 
improvements in the efficiency of frozen phonon calculations. We are currently using 
the technique described above to compute absolute deformation potentials of long- 
wavelength phonons [23]. Recently, we successfullly applied the method to compute the 
temperature dependence of the band gap of silicon, which can be related to the degree 
to which phonon modes soften upon creation of an electron-hole pair [24], 

Vext(r) = V(q)  exp(iq 0 r) + cc (6.3) 
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